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Abstract
Dislocation mobility in quasicrystals is calculated using basic thermodynamic and
hydrodynamic equations. The dependence of the dislocation mobility on viscosity, vacancies
and phasons is given. It is shown that the phasonic defects make the major contribution to the
inverse mobility of the free segments of dislocations.

1. Introduction

The mechanical properties of quasicrystals as well as usual ma-
terials strongly depend on the behavior of defects [1–3]. Much
about the structure of the defects, particularly dislocations, in
quasicrystals has been learned from experiments. Dislocations
in quasicrystals move preferentially by climbing [4]. But there
is still no consistent theory describing the dynamics of disloca-
tions in quasicrystals. Previously Lubensky et al [5] developed
a general approach and derived expressions for the dislocation
mobility in quasicrystals in terms of vacancy diffusion con-
stants. Later on Khannanov [6] noted that the hydrodynamic
equations used in [5] did not explicitly treat vacancy diffusion.
In [7] the dynamic equations for the interrelated elastic and
phason fields derived in [6] and the description of the dislo-
cation mobility in a quasicrystal developed in [5] were used.
This approach enabled us to find the dependence of dislocation
mobility on vacancy diffusion in an explicit way.

In the present work expressions for the dislocation
mobility are found using a different approach based on the
classical equations of thermodynamics and hydrodynamics
including the viscosity. The contributions of the vacancy
diffusion and phasons to the dislocation drag are derived.
The obtained relations are evaluated for the most studied
icosahedral quasicrystal, Al–Pd–Mn, as an example.

2. Dislocation mobility

2.1. General equations

For simplicity let us consider rectilinear dislocation with a
Burgers vector of length b in a crystal or quasicrystal of linear

size L under a shear stress σ . The stress generates the force
acting on unit length of the dislocation, FD = σb. The
dislocation velocity is proportional to FD,

vD = M FD, (1)

where coefficient M is the mobility.
In crystals the Peach–Koeler force FD on a straight

dislocation line is proportional to the applied stress σ̂ and the
Burgers vector b [8],

FDi = ei jkbnσn j lk, (2)

where ei jk is the antisymmetric unit tensor and l is the unit
vector along the dislocation line.

Icosahedral quasicrystals are modeled by projecting the
six-dimensional (6D) cubic crystal on the three-dimensional
(3D) space. For this reason equation (2), which is valid for
six-dimensional space, has to be transformed by projecting on
3D space [7, 9],

FDi = ei jkb6D
n σ 6D

n j l6D
k = ei jkb‖

nσn j(Pr̂ ‖l)k+ei jkb⊥
n Pnj (Pr̂⊥l)k,

(3)
where b‖

n, b⊥
n and (Pr̂ ‖l)k, (Pr̂⊥l)k are the projections of the

six-dimensional Burgers vector and the unit vector along the
dislocation line on the physical and phason space, respectively.

The work done by the force FD is equal to the rate of
energy dissipation of a moving dislocation

FD · vD = − d

dt

∫
d2r Eel, (4)
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where Eel is the density of the elastic energy. The integral is
over the two-dimensional plane orthogonal to the (presumably
straight) dislocation line. The vectors FD and vD can be
considered parallel, neglecting the effects of anisotropy [5].
Choosing the coordinate x along the direction of FD, we can
present the equation for the inverse dislocation mobility M−1

in the following way:

M−1 = |Ė | · v−2
D , (5)

where |Ė| is the magnitude of the elastic energy dissipation
rate.

2.2. Contribution of viscous flow

There are stresses generated by a moving dislocation in a
quasicrystal. These stresses and the corresponding mechanical
energy relax. These energy dissipation processes can be
termed (as in liquids) the internal friction or viscosity
processes [10, 11]. The relaxation can be described using
conventional hydrodynamic approach.

The motion of a dislocation in a quasicrystal is hindered
by the lack of translational symmetry. The viscosity causes the
energy dissipation of a dislocation. As is well known [12], the
dissipated mechanical energy per unit time is

Ėmech = −T Ṡ, (6)

where T is the temperature and Ṡ is the derivative of the
entropy over time. Neglecting the thermal conductivity and
using the general equation of heat transfer [12] we obtain

ρT

(
∂s

∂ t
+ v∇s

)
= σ ′

ik

∂vi

∂xk
, (7)

where ρ is the density, s is the entropy per unit mass, v is the
velocity (v ≡ vD) and σ ′

ik is the viscous stress tensor. Hence
we derive

∂

∂ t

∫
ρs dV =

∫
σ ′

ik

T

∂vi

∂xk
dV , (8)

where the left-hand side of the equation corresponds to the rate
of change of the total entropy per unit time. Substituting (8)
in (6) we obtain:

Ėmech = −
∫

σ ′
ik

∂vi

∂xk
dV = −1

2

∫
σ ′

ik

(
∂vi

∂xk
+ ∂vk

∂xi

)
dV .

(9)
The latter equality follows from the symmetry of the tensor σ ′

ik .
In the paper of Khannanov [6] the viscous stress tensor for

quasicrystals is represented as follows:

σ ′
ik = ηiklm vlm , (10)

where ηiklm is the viscosity tensor, vlm is the strain rate tensor
and

vi j = 1
2 (∇iv j + ∇ jvi ). (11)

The vector of macroscopic velocity v is determined by the
derivative of the total displacement field U over time,

v = ∂U
∂ t

. (12)

Let us consider the self-similar solution for the
displacement field of a dislocation which is described by one
variable r − vDt [5], i.e.

U(r, t) = U(r − vDt). (13)

Substituting (10), (11) into (9) and considering (13) we obtain

Ėvisc = − 1
4ηiklm

∫
[∇i (vD∇)Uk + ∇k(vD∇)Ui ]

× [∇l(vD∇)Um + ∇m(vD∇)Ul] d2r. (14)

Let us choose the coordinate system with the axis
z directed along the dislocation line. Performing two-
dimensional Fourier transformation in the plane (x, y) we
obtain from (14)

Ėvisc = − 1
4ηiklm

∫
[qiUk(−q) + qkUi (−q)]

× [qlUm(q) + qmUl(q)](vDq)2 d2q. (15)

Since the viscosity is isotropic for the icosahedral quasicrystal,
the viscosity components can be presented as follows:

ηi jkl = (
ηL − 4

3ηT
)
δi jδkl + ηT

(
δikδ jl + δilδ jk − 2

3δi jδkl
)
,

(16)
where ηL and ηT are the longitudinal and transverse viscosities,
respectively. The diagonal component of the viscosity tensor
reduces to ηiiii = 9ηL. In this case

Ėvisc = −9ηL

∫
|Ui(q)|2q2

i (vDq)2 d2q. (17)

It follows from (5) and (19) that the contribution of the
viscosity to the dislocation mobility is

M−1
visc = 9ηL

∫
|Ui (q)|2q2

i q2
x d2q. (18)

2.3. The contribution of vacancies

The lack of translational symmetry of quasicrystals manifests
itself in the inherent phason defects, i.e. thermally activated
transformations of the atomic structure of quasicrystals. As
a result additional defects emerge, and hence it is required
to account for the diffusion of vacancies when regarding the
dynamics of dislocations. The growth rate of the entropy with
time, allowing for the vacancies, was obtained in [12]:

∂S

∂ t
= −

∫
1

T
j∇μ d2r . (19)

Then the energy dissipation equals

Ėdif =
∫

j∇μ d2r . (20)

Let us denote by C the additional vacancy concentration
(the part due to the vacant nodes), caused by the
deformations [6]. In this case, the expression for the vacancy
flux density is as follows:

j = −D
k p

p
∇ p, (21)

2
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where D is the diffusion coefficient, k p D is the coefficient of
pressure diffusion, k p is the pressure diffusion relation,

k p = p

(
∂V

∂C

)
p,T

/(
∂μ

∂C

)
p,T

, (22)

where V is the volume, p is the pressure, T is the temperature,
μ is the chemical potential. A one-component quasicrystal is
considered for simplicity. The vacancy is the dilatation center
and

p = − 1
3

∑
i

σii , (23)

where σi i is the diagonal component of the elastic stress tensor
σi j .

Taking into account the vacancy stress field, the relation
of the total distortion ∇i U j to the elastic distortion βi j is as
follows:

∇iU j = βi j + 1
3�Cδi j , (24)

where � = ( ∂V
∂C )p,T is the vacancy dilatation volume. The

quantity 1
3�Cδi j is the distortion caused by the vacancies.

In the absence of applied stresses, this distortion determines
the dilatation of a physically small volume of a quasicrystal,
which is, however, rather large compared to the atomic
one, and is thus an inherent distortion. Since the vacancy
concentration C = C(r) is heterogeneous in the general case,
such a distortion causes incompatibility of the sections of a
quasicrystal lattice.

The chemical potential gradient depends on the concentra-
tion and pressure gradients as follows,

∇μ =
(

∂μ

∂C

)
p,T

∇C +
(

∂μ

∂p

)
C,T

∇ p. (25)

Let us introduce a new constant γ = k p/p, then

(
∂μ

∂C

)
p,T

= �

γ
. (26)

Equation (25) reads

∇μ = �

γ
∇C + �∇ p. (27)

Combining (20), (21) and (25) we have

Ėdif = −D�

∫
[γ (∇ p)2 + ∇C∇ p] d2r . (28)

The linearized equation of momentum conservation for the
quasicrystal is [6]

ρ
∂vi

∂ t
= ∇ jσ j i + ∇iσ

′
i j . (29)

At a small dislocation velocity the left side of this equation can
be set equal to zero and hence it follows from (10)–(13), (30)
that

σi j = 1

2
ηk jlm

1

∇i
∇k(∇l(vD∇)Um + ∇m(vD∇)Ul). (30)

The pressure gradient can be obtained from (23) and (30),

∇ p = −1

6
∇ ∇i

∇k
ηiklm (∇l(vD∇)Um + ∇m(vD∇)Ul). (31)

Substituting (31) in (28) and making transformations similar to
those of the formula (15) we get

Ėdif = − 1
6 D�ηiklm

∫
(qlUm(q) + qmUl(q))

× qi

qk
q2C(−q)(vDq) d2q

− 1
36 D�γηiklmηp f dg

∫
(qlUm(q) + qmUl(q))

× (qdUg(−q) + qgUd(−q))
qi

qk

qp

q f
q2(vDq)2 d2q. (32)

At the nonzero diagonal component of a viscous tensor the
energy dissipation reduces to

Ėdif = −3D�ηL

∫
Ui(q)C(−q)qi q

2(vDq) d2q

− 9D�γη2
L

∫
|Ui (q)|2q2

i q2(vDq)2 d2q. (33)

As is seen from (5) and (33), the contribution of diffusion to
the dislocation mobility is

M−1
dif = 3D�ηL

|vD|
∫

Ui (q)C(−q)q2qi qx d2q

+ 9D�γη2
L

∫
|Ui (q)|2q2q2

i q2
x d2q. (34)

The first and second terms of the right-hand side of (34)
describe the interaction of the elastic fields with the dilatations
caused by vacancies and the higher order of influence of the
elastic deformations, respectively. Thus, finally

M−1
dif = M−1

difUC + M−1
difU,

M−1
difUC = 3D�ηL

|vD|
∫

Ui(q)C(−q)q2qi qx d2q,

M−1
difU = 9D�γη2

L

∫
|Ui (q)|2q2q2

i q2
x d2q.

(35)

2.4. Phason contribution

As was previously noted, quasicrystals possess so-called
phason defects—local violations of the quasiperiodicity of a
quasicrystal [1–3, 6]. Their presence additionally hinders
the dislocation motion in a quasicrystal. Due to the lack of
translational symmetry of quasicrystals, a moving dislocation
necessarily leaves behind a planar defect consisting of a plane
of phason defects [13]. It is considered that a so-called phason
wall dissolves upon annealing. The energy dissipation due to
this process can be calculated similarly to that described by
equation (9). But in this case we have to substitute the phason
stress tensor Pi j [6] for the viscous stress tensor and the phason
drift velocity ẇ (w is the phason field) for the dislocation
velocity v = ∂U

∂ t :

Ėmech =
∫

Pik
∂ẇi

∂xk
dV . (36)

3
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Just like for the field U, we will consider the field w
which is described by a single variable r − vDt [5], w(r, t) =
w(r − vDt). The linearized equation of motion for the field w
is obtained in [6],

∂w
∂ t

= 
w(∇ · P̂), (37)

where 
w is the phason kinetic coefficient. From (37) we
derive the expression for the phason stress tensor:

Pi j = − 1


w∇i
(vD · ∇)w j . (38)

Substituting (38) in (36) we obtain

Ėphas = 1


w

∫
1

∇i
(vD∇)wk ·∇k(vD∇)wi d2r

= − 1


w

∫
wk(q)wi (−q)

qk

qi
(vDq)2 d2q. (39)

For the diagonal component we have

Ėphas = − 1


w

∫
|w(q)|2(vDq)2 d2q. (40)

Thus the contribution of the phason deformations to the
dislocation mobility is

M−1
w = 1


w

∫
|w(q)|2q2

x d2q. (41)

Comparing the results obtained for the dislocation
mobility with those obtained in [7], one can see that the term
Mdiag,−1

w is the same in both papers. The vacancy diffusion
terms M−1

difUC and M−1
difU (35) in [7] differ only in numerical

coefficients ∝ 1. This difference is unimportant due to the
simplifications of the models used. The viscosity term M−1

visc
has a slightly different form in [7] but its general structure
remains the same.

3. Numerical estimations of dislocation mobility

In order to estimate the dislocation mobility M , the coefficients
in (18), (34) and (41) are to be evaluated. The coefficients are
considered in detail in the appendix.

The gradients of the elastic and phason displacement fields
are roughly constant on a circle of radius r centered on the
dislocation line [5]:

(∇u)r ≈ b ≈ (∇w)r. (42)

The displacements induced by vacancies have to be considered
too. Thus instead of the elastic displacement field u we should
use the total displacement field U. It follows from (24) and (42)
that

∇U(r) = b/r + �C(r), (43)

or

U(r) ≈ b ln
r

b
+ �

∫ r

b
C(r) dr . (44)

Substituting the vacancy concentration around a dislocation
C(r) calculated in appendix (A.3) into (44) gives

U(r) = b ln
r

rd
+ �Cd(r − rd) + �C2r

(
ln

r

rd
− 1

)
, (45)

where Cd = C(rd) is the vacancy concentration in the
vicinity of the dislocation core, rd ≈ b is the radius of the
dislocation core, C2 = (C1 − Cd)/ln(R/rd), R ∼ 1/

√
ρ is the

distance between dislocations and C1 = C(R). The Fourier
transforms of the total displacement field U(q) and the vacancy
concentration C(q) in the cylindrical coordinates read

U(q) ≈ b

q2
+ �

q3
(Cd + C2) − 2π�Cdrdδ(qx)δ(qy), (46)

C(q) ≈ (Cd − C2 ln rd)2πδ(qx)δ(qy) + C2

q2
, (47)

and the Fourier transform of the phason displacement field, as
was found in [5],

w(q) ≈ b/q2 (48)

can be substituted into (18), (35) and (41).
We now turn to the estimation of the summands of the

inverse mobility (18), (34) and (41). The integration in these
relations is in the range from qmin = 1/R to qmax = 1/b. Thus
from (41) subject to (48) we obtain

M−1
w ≈ b2


w

ln

(
R

b

)
. (49)

Substituting the values of the parameters entering into (49)
from the appendix we can estimate

M−1
w ≈ 3.3 × 104 Pa s. (50)

For the estimate the inverse dislocation mobility considering
viscosity (18) and diffusion (34) at the temperature T =
1000 K we have

M−1
visc ≈ 0.4 Pa s, M−1

difUC ≈ 2.5 × 10−4 Pa s,

M−1
difU ≈ 10−9 Pa s.

(51)

Thus, the total inverse mobility reads

M−1 = M−1
w + M−1

visc + M−1
difUC + M−1

difU

≈ 0.4(8.3 × 104 + 1 + 6.5 × 10−4 + 2.5 × 10−9) Pa s.

(52)

It appears that for the chosen magnitudes of the parameters
which enter into the expression for dislocation mobility in
quasicrystals, the phason term makes the major contribution to
the inverse mobility. The viscous flow of the vacancies cloud
has much less influence on the mobility.

4. Discussion

In [5] the quantities entering the expression for the contribution
of the phason deformations into the drag of a dislocation were
evaluated using the dynamic characteristics of dislocations in
crystals. This has led to the estimate M−1

w ≈ 105 Pa s.

4
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Table 1. The dislocation mobility calculated based on the
experimental data from [14] at different temperatures.

T
(◦C)

σ
(MPa)

ρ

(109 cm−2)
v

(10−10 m s−1)
M−1

(108 Pa s)
FD

(N m−1)

695 500 9 2.2 11 52.7
730 350 6 3.3 5.3 45.2
790 150 1 20 3.75 47.4
820 100 0.5 40 1.25 44.7

Instead, in the estimation (50), we use the values of the
Burgers vector, shear modulus and diffusion coefficient which
are experimentally obtained for Al–Pd–Mn quasicrystals. As a
result, the value of M−1

w turned out to be one order smaller than
that in [5], i.e. the mobility of the unpinned dislocation in [5]
is overrated.

It is interesting to compare the estimations of the
dislocation mobility for the alloy Al–Pd–Mn obtained in the
present work with the experimentally measured values in [14]
at different temperatures and dislocation densities. We assume
that the plastic deformation of quasicrystals Al–Pd–Mn is
of a pure dislocation nature and described by the Orowan
equation [15]

ε̇plast = ρbv (53)

where ε̇plast is the plastic deformation rate and v is the
dislocation velocity. Thus it follows that

v = ε̇plast/bρ. (54)

From (1), (2) we get F = bσ and the inverse dislocation
mobility

M−1 = bσ/v. (55)

The relations (54), (55) enable us to find an estimation
of the mobility using the experimentally measured values of
ρ, σ, ε̇plast at different temperatures as shown in table 1. The
drag force on dislocations in a real quasicrystal at T = 730 ◦C
turns out to be approximately three orders larger than the
quantity calculated for free parts of dislocations (52).

The reason for this disagreement lies, firstly, in the drag of
dislocations due to their mutual pinning. Assuming the density
of the pinning centers to be of the order of ρ we estimate
the distance between two pinning points on a dislocation as
l ∝ 1/

√
ρ and, consequently, the force acting on a dislocation

segment of length l is FD = σ l ≈ σ/
√

ρ. It is seen
from table 1 that this quantity is weakly dependent on the
temperature and is close to FD ≈ 46 N m−1. One can conclude
that the origin of the observed force is just the mutual pinning
of dislocation which defines the magnitude of the drag force in
a real Al–Pd–Mn quasicrystal. This means that the dislocations
become mobile when the tension of the dislocation segment FD

becomes equal to the pinning force which is weakly dependent
on the temperature. As can be seen from table 1, the dislocation
density quickly decreases with temperature. Consequently it
can be expected that the effects of pinning of dislocations
are small and the drag mechanism described in this paper
dominates at high temperatures close to the melting point.
On the other hand, the mobility of freely moving dislocation
segments directly measured in [4] is properly consistent with
our calculations if we assume the same order of magnitude for
stresses as in experimental conditions of [4] and [14].

5. Conclusions

An expression for the mobility of the free dislocation segments
in quasicrystals caused by the structure of a quasicrystal and
the presence of vacancies and phasons was obtained using
the basic relations of thermodynamics and hydrodynamics.
The expressions for the dislocation mobility in icosahedral
quasicrystals subject to the vacancy emission and inelastic
transformations related to the phason deformations are
deduced. It shows from the numerical evaluations of the
main contributions to the dislocation mobility that the phason
deformations appear to have the major contribution to the drag
of the free dislocations.

Similar values for the dislocation mobility in quasicrystals
have been obtained in [7] while applying a different technique
developed in [5]. The obtained results confirm the validity of
both approaches. A minor difference in the expressions for the
mobility is related to the simplifications of the models used.
Due to this similarity one can conclude that both approaches
give a reasonable description of the dislocation mobility in
quasicrystals.

Appendix

Here we calculate some parameters used in section 3 taking
into account the experimental data [4, 5, 16–18]. The
dislocations in quasicrystals become mobile at a temperature
of about 80% of the melting point [4]. In the examined Al–Pd–
Mn quasicrystal this temperature amounts to T = 993 K and
the dislocation velocity is vD ≈ 2 × 10−6 m s−1 [4].

The diffusion coefficient Dv can be presented in the
Arrhenius form [16],

Dv = Dv0 exp

(
− Em

v

kBT

)
, (A.1)

where Em
v is the vacancy migration energy and Dv0 is the pre-

exponential factor. At the values Em
v = 1.5 eV and Dv0 =

10−4 m2 s−1 [16] experimentally obtained for the quasicrystals
we get D = 2.7 × 10−12 m2 s−1 at T = 993 K.

Since the dislocation velocity in quasicrystals is small,
we can consider the vacancy distribution around the moving
dislocation to be roughly quasi-stationary. The expression for
the vacancy concentration around a dislocation in cylindrical
coordinates can be derived from the stationary diffusion
equation

C = 0 (A.2)

with the boundary conditions in the vicinity of a dislocation
C(rd) = Cd, where rd ≈ b is the radius of the dislocation core
and C1 = C(R) is the concentration at the mean distance R
between dislocations. The solution to this equation is of the
form

C(r) = Cd + C2 ln(r/rd), (A.3)

where C2 = (C1 − Cd)/ln(R/rd). The mean distance between
dislocations, R, can be estimated as follows: R = 1/

√
ρ,

where ρ is the dislocation density. At ρ = 1014 m−2 [14]
we have R ≈ 10−7 m.

5
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The relation for the vacancy concentration (A.3) can be
used if the diffusion time τdiff is much less than the time t1
when a dislocation covers the distance R: τdiff � t1. Here
τdiff = R2/D and t1 = R/vD. Substituting the values of the
parameters R, Dv, vD we obtain that τdiff ≈ 10−2 s. Thus the
value of t1 is larger than τdiff by one order, so that (A.3) turns
out to be acceptable under the considered conditions.

The length of the Burgers vector is taken to be b ≈
0.5 nm = 0.5 × 10−9 m [4].

Let us evaluate the parameter C2. For that we will regard
the vacancy flux through a cylinder of radius r , surrounding the
dislocation. The vacancy flux density is

jv = −D∇C (A.4)

and the vacancy flux per unit dislocation length is

J = jv · 2πr = const. (A.5)

It follows from (A.3) and (A.5) that

∇C = C2 · 1

r
, (A.6)

J = −2π D
C2

Va
L, (A.7)

where Va is the atomic volume.
On the other hand, as the dislocation of the length L is

covering a distance x = vDt the vacancy flux is

J = ∂

∂ t
α

L

b

x

b
= ∂

∂ t
α

L

b

vDt

b
= α

LvD

b2
, (A.8)

where α · L/b is the number of vacancies emitted by the
dislocation upon its displacement by one interatomic distance,
α = 1 for the edge dislocation and α = 0 for the screw one.
Assuming mixed dislocations we put α = 0.1. The quantity
x/b is the number of sites covered by a moving dislocation
over a distance x . Thus α ·L/b ·x/b is the number of vacancies
emitted by a dislocation during its displacement over a distance
x and its time derivative gives (A.8).

From (A.7) and (A.8) we have

−2π D
C2

Va
L = α

LvD

b2
(A.9)

and

C2 ≈ − αvDVa

2πb2 Dv
. (A.10)

Substituting Va ≈ b3 in (A.10) at vD = 2 × 10−6 m s−1 [4] we
have

C2 ≈ − αvDb3

2πb2 Dv
= − αvDb

2π Dv
≈ −4.7 × 10−6. (A.11)

The vacancy concentration far from the dislocation, C1, is
equal to the thermally equilibrium one,

Ceq
v = e−Ev/kBT , (A.12)

where kB is the Boltzmann constant, Ev is the vacancy
formation energy. Since at the melting temperature Tm

for many metallic materials Ceq
v (Tm) = 10−4 and for the

icosahedral quasicrystal Al72Pd80Mn8 Tm = 1140 K [18], we
have a reasonable evaluation of the effective vacancy formation
energy Ev ≈ 0.9 eV. With this value the vacancy concentration
reaches C1 = 3 × 10−5 at T = 1000 K. Now we can
find the vacancy concentration in the vicinity of a dislocation:
Cd = C1 − C2 ln(R/b) ≈ 5.5 × 10−5.

The magnitude � determines the quasicrystal dilatation
at the introduction of a vacancy and it can be estimated as
� = 0.1 like that in the usual crystal. The viscosity coefficient
is η = 10−1 Pa s [5]. The parameter γ depends on the
dilatation � and the chemical potential μ = μv − μa:

γ =
(

∂V

∂C

)
p,T

/(
∂μ

∂C

)
p,T

= �Va

/(
∂μ

∂C

)
p,T

, (A.13)

where μv, μa are the chemical potentials of the vacancy and
the atom. Noting that Cv + Ca = 1 and μ = μ0 + kBT

va
ln C

C0
,

we have (
∂μ

∂C

)
p,T

= kBT

Cv(1 − Cv)Va
. (A.14)

Thus at Cv = Cd we get γ = −5 × 10−14 m3 J−1.
The phason kinetic coefficient was estimated in [5] as


w ≈ Dv/K , where K is the shear modulus. Substituting
the diffusion coefficient Dv calculated above and the shear
modulus K = 70 GPa from [17] we obtain 
w ≈ 3.8 ×
10−23 m3 s kg−1.
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